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Evaluation of Pressurization Fatigue Life of 1441 AI-Li Fuselage Panel

R. Keith Bird and Dennis L. Dicus

Summary

A study was conducted to evaluate the pressurization fatigue life of fuselage panels with

skins fabricated from 1441 AI-Li, an attractive new Russian alloy. The study indicated that 1441

A1-Li has several advantages over conventional aluminum fuselage skin alloy with respect to

fatigue behavior. Smooth 1441 AI-Li sheet specimens exhibited a fatigue endurance limit

similar to that for 1163 A1 (Russian version of 2024 AI) sheet. Notched 1441 AI-Li sheet

specimens exhibited greater fatigue strength and longer fatigue life than 1163 A1. In addition,

Tu-204 fuselage panels fabricated by Tupolev Design Bureau using AI-Li skin and ring frames

with riveted 7000-series aluminum stiffeners had longer pressurization fatigue lives than did

panels constructed from conventional aluminum alloys. Taking into account the lower density of

this alloy, the results suggest that 1441 A1-Li has the potential to improve fuselage performance
while decreasing structural weight.
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Introduction

The low density and good mechanical properties of AI-Li alloys make them attractive for

many structural applications, especially in the aerospace industry (ref_ 1). Research and

development eflbrts in Russia and the United States have focused on advanced A1-Li alloys for



aerospaceapplicationswherereducedstructuralweight is acritical goal (ref. 2-3). Since1994,
NASA LangleyResearchCenter(LaRC)hasengagedin cooperativeresearchactivitieswith the
All-RussiaInstituteof Aviation Metals(VIAM) andtheAll-RussiaInstituteof Light Alloys

(VILS) in Moscow, Russia, to evaluate a new Russian A1-Li alloy (1441 ) for fuselage skin

applications. The work included cold rolling and heat treatment process development,
characterization of microstructure and mechanical properties of cold-rolled sheet, and evaluation

of durability of fuselage panels fabricated with 1441 AI-Li skin. This paper focuses on the work
conducted at LaRC to evaluate the fatigue behavior of 1441 A1-Li sheet and the pressurization

fatigue life of fuselage panels using 1441 AI-Li skin.
Four fuselage panels fabricated by Tupolev Design Bureau under contract to VIAM using

1441 AI-Li were subjected to cyclic pressurization and depressurization to simulate flight

conditions. Two panels were tested at LaRC and two were tested at Tupolev. In addition, the S-

N fatigue behavior of 1441 A1-Li sheet was evaluated. This report summarizes the results from

the tests conducted at LaRC and compares the data with that obtained from VIAM and Tupolev.

Experimental Procedures

Materials

All materials evaluated at LaRC were provided by VIAM. The nominal composition of

1441 AI-Li, in weight percent, is A1 - 1.6 Cu - 1.7 Li - 0.95 Mg -0.08 Zr. Sheet fatigue life was

evaluated using 0.055-inch thick cold-rolled 1441 A1-Li sheet. The fuselage panels manufactured

by Tupolev consisted of 0.055-inch thick 1441 A1-Li skin, 1441 AI-Li ring frames, and

V95pchT2 aluminum stiffeners. Alloy V95pchT2 is the Russian version of the U.S. aluminum

alloy 7475. All of the 1441 AI-Li was in the TI condition (annealed at 990°F, water quenched,

stretched, aged at 300°F for 24 hours).

Test Specimens

Fatigue specimens

The fatigue life of the 1441 AI-Li sheet material was evaluated using smooth and notched

fatigue specimens (see figures 1 and 2). The smooth fatigue specimens (kt = 1) were of the

"hour glass" variety with a minimum width of 0.5 inch in the test section. The notched fatigue

specimens (kl = 2.6) had a test section that was 1.5 inches in length and 0.5 inch in width with a
0.075-inch diameter hole drilled through the center.

Fuselage pressurization panels

A photograph of one of the two panels that were tested at LaRC is shown in figure 3.

The panels, fabricated using the Tupolev-204 fuselage design, were approximately 5 feet long
and 5 feet wide with a radius of curvature of 75 inches. Each panel contained two riveted

longitudinal single skin overlap splice joints. The two joints had different rivet patterns, as
shown in the schematic diagrams in figures 4 and 5. One joint consisted of 3 longitudinal rows

of rivets with a 0.8-inch rivet spacing. The other joint consisted of 4 longitudinal rows of rivets

with a 1-inch rivet spacing. Nine longitudinal blade stiffeners fabricated from V95pchT2 (7475)
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aluminum alloy were riveted to each panel. In addition, three ring frames fabricated from 1441
AI-Li alloy were riveted to the panel circumference.

Fatigue Testing

The smooth and notched fatigue specimens were tested at room temperature using a

closed-loop servohydraulic fatigue test machine with programmable load profiler. The

specimens were tested under constant amplitude loading conditions with an R value of 0.1 at a

frequency of 10 Hz. Run-out was defined as 1,000,000 cycles without specimen failure. Fatigue

stresses for the notched specimens were calculated based upon the net cross-sectional area.

Panel Pressurization Fatigue Testing

The purpose of the panel pressurization test was to characterize the initiation and growth

of fatigue cracks in the riveted joints and to determine the fatigue life of the panels under

conditions that simulate fuselage pressurization/depressurization during each flight. The two

fuselage panels were tested simultaneously under the same pressure conditions by mounting

them in back-to-back fashion to a pressurization test fixture. Due to funding constraints, a

simplified test fixture for pressurizing the panels was designed and built using plywood and
lumber.

The primary component of the fixture that supported reaction loads from the panel during

pressurization consisted of a 0.75-inch thick plywood sheet that was 69.5 inches long by 61

inches wide. Figure 6a shows a schematic diagram of this support structure. A frame of 2-inch

by 4-inch lumber was glued and nailed along the perimeter of the plywood sheet. The plywood

was stift_ned using 2-inch by 4-inch lumber horizontal stiffeners and 4-inch by 4-inch lumber

longitudinal stiffeners. The ends of the horizontal stiffeners were beveled to match the contour

of the panels to prevent interference when the panels were attached to the fixture. The plywood

sheet was perforated to allow equalization of pressure between the panels mounted to both sides

of the test fixture. Styrofoam insulation was used to fill up as much internal volume as possible

to reduce the time required to pressurize the panels. Figure 6b illustrates the clamping
arrangement used to attach the panels to the test fixture. 4-inch by 4-inch lumber was machined

to match the contour of the curved fuselage panels. The interior portion of the 4-inch by 4-inch

lumber clamp was glued to the frame of the structural support fixture. The panels were mounted

to the test fixture using wood screws, with a rubber gasket located between the panels and the

clamping fixture. The exterior portion of the clamp was installed using threaded rods that

extended through the fixture from front to back along all four sides of the fixture. The clamping
force was applied by tightening nuts on the front and back of the fixture. RTV sealant was
applied to all edges of the fixture.

Figure 7 shows a photograph of a panel mounted in the pressurization test fixture with

instrumentation attached. A second panel is attached to the other side of the test fixture, hidden

from view. Pressurization hardware was mounted to the test fixture at the top of the frame. A

50-psig air supply line was attached to the pressurization valve. The valve was interfaced with a

microprofiler which controlled the pressure profile. A typical pressure profile is shown in figure

8. The panels were cycled between ambient pressure and 9.4 psig at a rate of approximately 3

cycles per minute. The panels were pressurized from ambient pressure to the target maximum



pressureasquickly aspossible.Whenthetarget maximum pressure was attained, the

microprofiler opened the pressure valve to release the pressure as quickly as possible.

The panels were instrumented to measure pressure, strain, and deflection. Pressure was

measured by transducers located at the top and bottom of the test fixture. Strain gages were
attached to the external surface of both panels in the locations shown in figures 9a, 9b, and 9c.

Strain gages 07 and 12 measured strain in the longitudinal direction. The remaining strain gages

(01-06, 08-11, 13-15) measured strain in the circumferential direction. In addition, LVDT's were

used to measure the maximum panel deflection during the pressurization cycles. The entire

assembly was isolated in a closed room for safety purposes. Video cameras were used to

monitor both panels. The pressurization testing was interrupted periodically to allow the panels

to be inspected for fatigue crack initiation and growth in the riveted joints.

Results and Discussion

Fatigue results

The S-N fatigue behavior of smooth and notched 1441 AI-Li sheet specimens is shown in

figure 10. Also shown are reference data from VIAM for 1163 AI (Russian version of U.S.

aluminum alloy 2024) alloy sheet. The data for the smooth 1441 AI-Li specimens indicate an

endurance limit of approximately 25 ksi at 1,000,000 cycles. This endurance limit compares

favorably with that for 1163 A1, which was reported to be approximately 17 ksi at 2,000,000

cycles. The fatigue data for notched specimens show a significantly higher fatigue strength and

life for 1441 A1-Li compared to 1163 AI.

Panel pressurization results

The outward deflection of one of the panels during three pressurization cycles is shown in

figure 11. This behavior is representative for both panels. During pressurization (loading), the

panel deflection varied linearly with pressure to approximately 7 psig, at which point the
deflection deviated from linearity. A maximum deflection of approximately 0.4 inch was

attained at the peak pressure. During depressurization (unloading), the deflection was highly

non-linear, resulting in a hysteresis loop. This hysteresis loop was repeatable.

Figure 12 shows the hoop and longitudinal strain responses in the panel skin measured

with strain gage numbers 06 and 07, respectively, over three pressurization cycles. Both the

hoop and longitudinal strain varied nonlinearly with pressure. In addition, the longitudinal strain

exhibited a relatively large hysteresis during the pressurization cycle, which resembled the shape

of the hysteresis loop associated with the panel deflection. The non-linear strain and deflection
behavior is believed to be fixture induced. The fixed panel end constraints resulted in the

development of bending stresses in the longitudinal direction as the pressure was applied.

Figure 13 shows the hoop and longitudinal stress responses calculated using the strain

data from the previous figure and the following biaxial stress equations:

(_hoop = E (Ehoop + VEIong) / (1 - V 2) (ref. 4)

¢_to,g = E (elo,g + VEhoop) / (1 - V 2) (ref. 4)
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where:
E = elasticmodulus(11.4Msi)
v = Poisson'sratio (0.33)

Also shownin the figureis thehoopstressgeneratedatthemaximumpressure(9.4psig)from
thefuselagepanelstestedatTupolev. Thishoopstressvaluewasprovidedby VIAM. In
addition,theplot showsidealizedhoopandlongitudinalstressresponsesto internalpressurefor
athin-walledcylindricalpressurevessel(ref. 4). TheLaRCfuselagepanelhoopstresswas
approximately10%lessthanthatfor an idealthin-walledcylinder.Themaximumhoopstress
appliedto thepanelstestedatTupolevwaswithin 10%of thatappliedto thepanelsat LaRC.
Thelongitudinalstressdevelopedin thepanelstestedat LaRCwasapproximately50%greater
thanthatfor an idealthin-walledcylinder. Thetestfixtureusedat Tupolevemployedhingesfor
panelattachmentin thehoopdirectionandflexiblesealsthatallowedtheendsof thepanelto
deflect. This testarrangementreducedthelongitudinalstresscomponentin thetestpanelsto
minimal levels. Thus,thehoopstressesweresimilar for thepanelstestedat LaRCandTupolev.
With respectto the longitudinalstresses,however,theLaRCtestsgeneratedstressesthat were
greaterandtheTupolevtestsgeneratedstressesthatwerelower thanthatfor the idealcase.

Thepressurizationtestwasinterruptedperiodicallyto visuallyexaminetherivetedjoints
in eachpanelfor fatiguecracking.No signsof crackingwithin thejoints weredetectedby
inspectionsof theexteriorof thepanels.However,after 193,000pressurizationcycles,oneof
thepanelsfailedcatastrophicallyalongoneof therivetedsplicejoints. Figures14and 15show
anexteriorview andan interiorview, respectively,of thepanelafterrupture.Thefracture
occurredin therivetedjoint with threerowsof rivets. An examinationof thepanelfracture
surfacewasconducted.Twodistinct fatiguecrackswereidentified,eachbeingapproximately2
incheslong. Thelocationsof thesefatiguecracksareshownin figure 15. Figure 16showsa
detailedview of oneof thefatiguecracks.Thefatiguecracksinitiatedandpropagatedin the
1441AI-Li skinalongarivet line hiddenfrom view in theoverlapjoint, andwould only have
beendetectedby dismountingthepanelsandinspectingtheinteriorof thepanels.Thus,the
crackswerenot observeduntil fractureoccurred.Duringthepanelruptureprocess,thethree
ring frameswerefracturedbyoverloadandthestiffenersbuckled. Theotherpanelremained
intact,butexaminationrevealedtheexistenceof smallfatiguecracks_lessthanoneinch in
length,in therivetedjoints. Thesecrackswerelocatedin areassimilarto thecracklocationsin
therupturedpanel.

Theresultsof thepanelpressurizationfatiguetestsconductedat LaRCandTupolevare
shownin figure 17. Shownfor comparisonareresultsprovidedby VIAM from a Tu-204
fuselagepanelconstructedusingconventional1163(2024)aluminumskin. Theconventional
panelaccumulated163,000pressurizationcyclesprior to rupture. Thetwo AI-Li panelstestedat
Tupolevattained250,000cycleswithout signsof fatiguecracking,atwhich point thetestwas
stopped.As statedpreviously,onepaneltestedatLaRCrupturedafter 193,000pressurization
cycleswhile theotherpanelremainedintact. Testingof theunrupturedpanelwasdiscontinued
becauseof thedifficulties in sealingthebacksideof thepressurecavity in theback-to-back
schemeemployedfor thepressurizationfatiguetests.Thedataindicatethat panelswith 1441
AI-Li skinhavea longerpressurizationfatiguelife thandopanelswith conventionalaluminum
alloy skin. Thisresultisconsistentwith thegreaterfatiguelife of 1441A1-Li sheetcomparedto
1163(2024)aluminumsheet.Thedifferencein pressurizationfatiguelife of the 1441AI-Li
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panelstestedatLaRCandTupolevwasattributedto thesignificantlongitudinalstresses
developedin theLaRCpanelsasaresultof theendconstraints.

Conclusions

The results of this study have shown that Russian 1441 AI-Li alloy has several

advantages over conventional aluminum fuselage skin alloy with respect to fatigue behavior.

Smooth 1441 A1-Li sheet specimens exhibited a fatigue endurance limit similar to that for 1163

aluminum (Russian version of 2024 Ai) sheet. Notched 1441 AI-Li sheet specimens exhibited

greater fatigue strength and longer fatigue life than 1163 A1. In addition, Tu-204 fuselage panels

fabricated by Tupolev Design Bureau using 1441 A1-Li skin and ring frames and V95pchY2

aluminum (Russian version of 7475) stiffeners had longer pressurization fatigue lives than did

panels constructed from conventional aluminum alloys. Taking into account the lower density of

this alloy, the results suggest that 1441 AI-Li has the potential to improve fuselage performance

while decreasing structural weight.
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Figure15" Rupturedfuselagepanel(interiorview).
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